
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013                                                                    1695 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

Correlation Analysis: The Bootstrap Approach 
1Ikpotokin O. and Edokpa I. W.  

   

Abstract–For a general class of problems, the bootstrap method of resampling is one of the possible methods of 
constructing tests of significance. The sampling distribution of a test statistic for an experiment compiled by the 
bootstrap approach requires no reference to the population distribution and therefore no requirement that it 
should conform to a mathematically definable frequency distribution. Algorithms for the bootstrap distribution 
of correlation coefficients are presented and implemented. As an illustrative example, a critical value for 
Pearson’s product moment correlation coefficients and Spearman’s rank correlation coefficients are produced 
for a given set of data. 
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1 INTRODUCTION 

here are several experimental situations in which 
there is only one set of n experimental     

subjects and two-observations are made on each 
subject. The data consists of n pairs, such as 
(𝑥1,𝑦1), (𝑥2,𝑦2), … , (𝑥𝑛 ,𝑦𝑛). In an attempt to ensure 
that the probability of type I error is approximately α 
in analyzing the linear relationship for paired 
observations, an algorithm for obtaining bootstrap 
distribution of paired observations is presented. A 
major problem of statistical inference is to obtain the 
test of significance when the form of the underlying 
probability distribution is unknown. The idea of a 
general method of dealing with this problem of 
obtaining the test of significance originated with [1], 
[2]. The essential feature of the method is that a large 
number of bootstrap samples of the observations are 
considered, with the property that each bootstrap is 
equally likely under the hypothesis to be tested. A test 
on the level of significance is constructed by choosing 
a proportion, α, of the bootstrap as critical region. It is 
shown in [3] that for a general class of problems, the 
bootstrap approach is one of the possible methods of 
constructing a test of significance. Several approaches 
which are computationally demanding such as 
permutation have been suggested as alternatives to the 
bootstrap approach because of it exactness; see [4], 
[5], [6], [7].  
Bootstrap tests are attractive because the distribution 
of the observations under the null hypothesis need not 

be known in order to obtain the p-value. Sideridis and 
Simos [8] assert that the bootstrap test is as powerful 
as the best parametric test when based on the same 
statistic. Permutation procedures gives exact result 
most especially when it can carry out complete 
enumeration of all possible distinct rearrangements for 
small sample size. These procedures can sampling 
without replacement within a sample, but cannot 
avoid the impossibility of complete enumeration when 
the sample sizes are fairly large; thereby reducing the 
power of the permutation test, see [9]. This paper 
therefore presents an algorithm that makes it possible 
to obtain large bootstrap configurations of an 
experiment without the problem of drawing a 
complete enumeration. 
 
1.1 Correlation Analysis   
Correlation coefficient has become the workhorse of 
quantitative research and analysis. Relationships 
among things are often examined in terms of whether 
they change together or separately. The world around 
us is understood through the multifold and interlaced 
correlations it manifests. The bootstrap method 
discussed in this paper is applied to measure linear 
association in paired, exchangeable observations, see 
[10], [11]. Exchangeability is a generalization of the 
concept of independent, identically distributed random 
variables. Bootstrap analysis of correlation assumes 
that in the null hypothesis, two variables X and Y 
(𝑥𝑖 ∈ 𝑋;𝑦𝑖 ∈ 𝑌); are independent within each 
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individual unit and pairs (𝑥𝑖,𝑦𝑖), 𝑖 = 1,2, … ,𝑛 are 
independent and identically distributed. Paired, 
exchangeable observations (𝑥1;𝑦1), have the same 
distribution as (𝑦1;𝑥1), and the marginal distributions 
of 𝑥1 and 𝑦1 are identical. A test of exchangeability of 
paired observations is given by [12]. Computational 
advances involving the use of bootstrap tests are well 
documented in [13], [4], [14] and [15].  
The two most commonly used correlation coefficients 
are the Pearson’s correlation coefficient and the 
Spearman’s rank correlation coefficient. Given the 
observations (𝑥𝑖,𝑦𝑖), 𝑖 = 1, 2, … , 𝑛, the Pearson’s 
correlation coefficient is defined as 
 𝑟 = ∑𝑥𝑦−𝑛�̅�𝑦�

�[(∑𝑥2−𝑛�̅�2)(∑𝑦2−𝑛𝑦�2)]
  (1) 

When r is calculated from sample data, the obtained 
value is only an estimate of a corresponding 
population correlation coefficient, denoted by 𝜌. To 
test the null hypothesis of no correlation, for example, 
𝐻0: 𝜌 = 0, we assume that both variables are 
measured on an interval or ratio scale. The calculation 
is based on the actual values and both variables (X and 
Y ) have a normal distribution. If all the assumptions 
are met and 𝐻0:𝜌 = 0 is true, then, for n pairs of 
observations, 𝑡 = 𝑟√𝑛−1

√1−𝑟2
 has the t distribution with 

𝑛 − 2 degrees of freedom. A more general way to test 
𝐻0: 𝜌 = 𝜌0 or construct confidence intervals for 𝜌 is 
based on Fisher Z transformation, 𝑍 = 1

2
ln 1+𝑟

1−𝑟
.  Z is 

approximately normal with 𝜑 = (𝑍 − 𝜇2)√𝑛 − 3 
having approximately the standard normal 
distribution, see [16]. 
To calculate the rank-correlation coefficient for n 
pairs of observations, find the sum of the squares of 
the differences, 𝑑, between the ranks of the X’s and 
Y‘s, and substitute into the formula  

            𝑟𝑠 = 1− 6∑𝑑2

𝑛(𝑛2−1)
                            (2)  

When there are ties, assign to each of the tied 
observations the mean of the ranks which they jointly 
occupy. When using 𝑟𝑠 to test the null hypothesis of 
no correlation between two variables X and Y, we do 
not have to make any assumptions about the nature of 
the populations sampled. To test the null hypothesis, 
the statistic, 𝑍 = 𝑟𝑠−0

1/√𝑛−1
= 𝑟𝑠/√𝑛 − 1, and this 

approximate the standard normal distribution. 
 

2 THE BOOTSTRAP ALGORITHM FOR 
CORRELATION 
The p-value of a test statistic represents the 
probability of obtaining values of the test statistic that 
are equal to or more extreme than the observed value 
of the test statistic. In this paper, consideration is 
given to the bootstrap distribution of paired 
observations on which the correlation coefficient is to 
be computed, [17], [18]. Given a bivariate sample 
(𝑥1,𝑦1), (𝑥2,𝑦2), … , (𝑥𝑛 ,𝑦𝑛) for which 
(𝑥1,𝑥2, … , 𝑥𝑛)~𝐹𝑋 and (𝑦1, 𝑦2, … , 𝑦𝑛)~𝐹𝑌 are 
simultaneously tested in an experiment with R as the 
test statistic. Let 𝐻0:𝐹𝑋 = 𝐹𝑌 against 𝐻1:𝐹𝑋 ≠ 𝐹𝑌 or 
𝐻1:𝐹𝑋 < 𝐹𝑌 or 𝐻1:𝐹𝑋 > 𝐹𝑌. For all (𝑛 + 𝑛) possible 
bootstrap sample sizes, systematically develop a 
pattern required to generate bootstrap samples as 
follows:       

i. Combine the  two sample sizes from the 
probability distribution (X and Y) as: 

      𝜃 = (𝑥1, 𝑥2, … ,𝑥𝑛 ,𝑦1,𝑦2, … ,𝑦𝑛)            (3) 
ii. Draw a bootstrap sample of size 𝑚 + 𝑛 

with replacement from step(i) to obtain 
      𝜃∗ = (𝑥1∗,𝑥2∗, … , 𝑥𝑛∗ ,𝑦1∗,𝑦2∗, … , 𝑦𝑛∗)          (4) 

iii. Let B be the number of bootstrap samples. 
Independently repeat step (ii) a large B of 
times and obtain bootstrap replications.  

iv. Separate the bootstrap sample in step (ii) 
into two parts according to the sample 
sizes of x and y respectively and compute 
the bootstrap Pearson  correlation 
coefficient (𝑟∗) as:  
𝑟∗ = ∑𝑥∗𝑦∗−𝑛𝑛�̅�∗𝑦�∗

�[(∑𝑥∗2−𝑛�̅�∗2)(∑𝑦∗2−𝑛𝑦�∗2)]
           (5) 

and the bootstrap rank-correlation 
coefficient   
𝑟𝑠∗ = 1− ∑𝑑∗2

𝑛(𝑛2−1)
             (6)   

The bootstrap replications obtained from 
step (iii) is represented as 

       𝑟∗1, 𝑟∗2, … , 𝑟∗𝐵 and 𝑟𝑠∗1, 𝑟𝑠∗2, … , 𝑟𝑠∗𝐵        (7) 
v. Bootstrap p-value (𝑃𝑏𝑜𝑜𝑡) is calculated by 

the fraction of times the theoretical 
Pearson’s correlation coefficient exceeds 
the correlation coefficient in the bootstrap 
replications and this is denoted by: 
(𝑃𝑏𝑜𝑜𝑡) = 1

𝐵
#{(𝑟∗) ≤ (𝑟)}  or 

(𝑃𝑏𝑜𝑜𝑡) = 1
𝐵

#{(𝑟𝑠∗) ≤ (𝑟)}           (8) 
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A practical implementation of the bootstrap 
algorithms developed in section 3 shall be carried out 
in what follows. 
Suppose a two sample experiment is drawn from the 
same population distribution. If the first set denotes 
𝑥1,𝑥2,𝑥3, 𝑥4,𝑥5 and the second set denotes 
𝑦1,𝑦2 ,𝑦3, 𝑦4,𝑦5, and observed that 𝑛 = 5 𝑎𝑛𝑑 𝑛 = 5, 
a pool of the observations into a single sample yield: 
𝜃 = (𝑥1, 𝑥2,𝑥3,𝑥4,𝑥5 𝑦1, 𝑦2,𝑦3, 𝑦4,𝑦5)               (9) 
The number of bootstrap samples with replacement 
from the original sample (9) is: 
𝜃∗ = (𝑥1∗,𝑦2∗,𝑦3∗,𝑥5∗,𝑦2∗, 𝑥3∗,𝑥2∗,𝑥2∗,𝑥4∗, 𝑥1∗)            (10) 
Note that the actual process involved in obtaining (10) 
is that, randomly assign them to an ordered  
(𝑥1∗, … ,𝑥𝑛∗ ,𝑦1∗, … ,𝑦𝑛∗). So that an 𝑥𝑖∗ can also be 
assigned the value of 𝑦𝑗 in the original sample, and 
vice versa. 
Separate (10) into two parts according to the size of 
𝑥 𝑎𝑛𝑑 𝑦 from the original sample, so that it becomes 
𝑥∗ = (𝑥1∗,𝑦2∗,𝑦3∗,𝑥5∗,𝑥2∗) 𝑎𝑛𝑑  
𝑦∗ = (𝑥3∗,𝑦2∗,𝑥2∗,𝑥4∗, 𝑥1∗)                   (11) 
If 𝐵 = 10 for instance, repeat process (11) 10 times to 
obtain bootstrap configurations in Table 1, and Figure 
1 illustrate the flow chart on how to estimate the 
statistic of interest  from the set of bootstrap sample 
generated. To obtain the bootstrap p-value(𝑃𝑏𝑜𝑜𝑡), 
compute the bootstrap correlation coefficient (𝑟∗) or 
(𝑟𝑠∗) and count the number of 𝑟∗ or 𝑟𝑠∗ from the 
bootstrap data that is less than or equal to the 

Pearson’s correlation coefficient (r) of the original 
data and then divide by the number of bootstraps 
sample performed, and vice versa for a right-tailed 
test. 
i.e.(𝑃𝑏𝑜𝑜𝑡) = 1

10
#{𝑟∗ ≤ 𝑟}   𝑜𝑟  1

10
#{𝑟𝑠∗ ≤ 𝑟}      (12)

  
Note from Table 1 that each of the rows: 1 – 10 on 
the 1st column represent the number of bootstrap 
configurations. The 2nd and 3rd columns represented 
by 𝑥∗ 𝑎𝑛𝑑 𝑦∗ are the separated bootstrap samples in 
accordance with the sample sizes; n = 5 and n = 5 
respectively. The 4th and the 5th columns denoted by 
(𝑟∗) and (𝑟𝑠∗) represent the bootstrap Pearson and 
rank correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1: Bootstrap Replication for a Two Sample Experiment  

S/No 𝒙∗                                        𝒚∗  𝒓∗ 𝑟𝑠∗ 
1 𝑥1∗ 𝑦2∗ 𝑦3∗ 𝑥5∗ 𝑥2∗ 𝑥3∗ 𝑦2∗ 𝑥2∗ 𝑥1∗ 𝑥2∗ 𝑟1∗ 𝑟𝑠1∗  

2 𝑥4∗ 𝑦1∗ 𝑦3∗ 𝑦1∗ 𝑥12 𝑥4∗ 𝑦3∗ 𝑦12 𝑥4∗ 𝑦3∗ 𝑟2∗ 𝑟𝑠2∗  
3 𝑦2∗ 𝑥5∗ 𝑦5∗ 𝑥2∗ 𝑦1∗ 𝑥1∗ 𝑥1∗ 𝑦5∗ 𝑦2∗ 𝑥4∗ 𝑟3∗ 𝑟𝑠3∗  

4 𝑥3∗ 𝑥3∗ 𝑥2∗ 𝑦3∗ 𝑥1∗ 𝑦1∗ 𝑦1∗ 𝑥1∗ 𝑦3∗ 𝑥3∗ 𝑟4∗ 𝑟𝑠4∗  

5 𝑦3∗ 𝑥1∗ 𝑥4∗ 𝑥5∗ 𝑥3∗ 𝑦2∗ 𝑥4∗ 𝑥3∗ 𝑦3∗ 𝑦5∗ 𝑟5∗ 𝑟𝑠5∗  

6 𝑥2∗ 𝑦2∗ 𝑦4∗ 𝑦4∗ 𝑥2∗ 𝑥4∗ 𝑥2∗ 𝑦4∗ 𝑥2∗ 𝑦1∗ 𝑟6∗ 𝑟𝑠6∗  

7 𝑦2∗ 𝑥1∗ 𝑦3∗ 𝑥1∗ 𝑦2∗ 𝑥5∗ 𝑦2∗ 𝑦2∗ 𝑦2∗ 𝑥1∗ 𝑟7∗ 𝑟𝑠7∗  

8 𝑥5∗ 𝑥4∗ 𝑥1∗ 𝑦2∗ 𝑥4∗ 𝑦3∗ 𝑥5∗ 𝑦4∗ 𝑥5∗ 𝑥5∗ 𝑟8∗ 𝑟𝑠8∗  
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9 𝑦1∗ 𝑦5∗ 𝑥2∗ 𝑥4∗ 𝑦5∗ 𝑦5∗ 𝑥3∗ 𝑥5∗ 𝑦1∗ 𝑦2∗ 𝑟9∗ 𝑟𝑠9∗  

10 𝑥2∗ 𝑥3∗ 𝑥5∗ 𝑥3∗ 𝑥2∗ 𝑦4∗ 𝑦2∗ 𝑥2∗ 𝑥2∗ 𝑦3∗ 𝑟10∗  𝑟𝑠10∗  
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Flow Chart Illustrating Bootstrap  
 
Method 
When implementing the Spearman’s rank correlation 
coefficient, the ranking of the two samples is done 
independently and the ranks so obtained retain the 
positions of their respective observations. Therefore, 
any exchange of observations in any pair will result in 
a fresh ranking of the two samples. When ties exist, 
the mean rank of the tied observations is assigned to 
each of the tied observations. Algorithm 1 depicts the 
procedure for generating ranks for the tied and untied 
observations as required by the Spearman’s rank 
correlation coefficient. After independently sorting 
each sample in ascending order of magnitude, the 
algorithm ranks the observations and also takes care 
of tied observations. The algorithm presented in this 
paper can carry out a large replication of n-paired 
bootstrap samples by making the necessary 
adjustments to reflect the number of pairs. 
 
3 RESULTS AND DISCUSSION 
The algorithms were implemented in Visual Basic 
code. The paired bootstrap p-values generated for the 

Pearson’s and the Spearman’s correlation coefficients 
are presented in Table 2 along with their theoretical 
results for the scores of 15 students in Statistics (X)  
 
 
 
 
 
 
 
and Computer Science (Y) as presented in Appendix 
2. The algorithms can be applied to any sample size 
and the statistic of interest is computed each time a 
new bootstrap sample is generated. The scatter 
diagram and the bootstrap distribution of Pearson and 
Spearman’s correlation coefficient for scores of paired 
students are displayed in Figures 2 and 3 respectively. 
Critical values for the bootstrap distribution of the 
Pearson’s and Spearman’s rank correlation coefficient 
for the scores of paired students are presented in Table 
3 and Table 4. 
 
Table 2: P-values for correlation coefficients (1-tailed) 

Correlation  Coefficient Theoretical  Bootstrap  

1st 
 Bootstrap 
Corr. Coff 

1st 
Bootstrap 
Data set 

 
P - Value 

Original 
Data set 

2nd 
Bootstrap 
Corr. Coff 

2nd 
Bootstrap 
Data set 

10th 
Bootstrap 
Corr. Coff 

10th 
Bootstrap 
Data set 

Corr. Coff. 
Original  

Data   

Resample Calculate 
Statistic 

. 

. 

. 
. 
. 
. 
 

. 

. 

. 
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p-value p-value 

Person 0.710040 0.00101 0.00100 

Spearman 

rank 

0.641964 0.00410 0.004667 

 
 
    

    

    

 
 

 

Fig.2. Scatter diagram of the scores of paired students 
 
 

 
 
Fig.3. Distribution of Pearson and Spearman’s correlation 
coefficient for scores of paired   students 
 

Table 3: Lower critical values 𝑪𝜶 for 𝒓 and 𝒓𝒔 
(If 𝛼 ′ ≤ 𝛼, then 𝐶𝛼 = 𝐶𝛼≥; if 𝛼 ′ > 𝛼, then 𝐶𝛼 = 𝐶𝛼>) 
Correlation  

Coefficient 

𝛼 
0.001 0.0025 0.005 0.01 0.025 
𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 

Pearson (r)  -0.72 0.001 -0.67 0.0033 -0.61 0.0053 -0.58 0.01 -051 0.0253 

Spearman (𝑟𝑠) -0.72 0.001 -0.71 0.0027 -0.64 0.0057 -0.59 0.01 -0.48 0.0283 

 
Correlation  

Coefficient 

𝛼 
0.05 0.1 
𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 

Pearson (r)  -0.44 0.05 -0.35 0.1017 

Spearman (𝑟𝑠) -0.43 0.0507 -0.33 0.1067 

 
Table 4: Upper critical values 𝑪𝜶 for 𝒓 and 𝒓𝒔 
(If 𝛼 ′ ≤ 𝛼, then 𝐶𝛼 = 𝐶𝛼≥; if 𝛼 ′ > 𝛼, then 𝐶𝛼 = 𝐶𝛼>) 
Correlation  

Coefficient 

𝛼 
0.001 0.0025 0.005 0.01 0.025 
𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 

Pearson (r)  0.69 0.001 0.67 0.0027 0.64 0.0043 0.60 0.008 0.51 0.0233 
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Spearman (𝑟𝑠) 0.73 0.001 0.70 0.002 0.63 0.0047 0.57 0.0097 0.51 0.024 

 
Correlation  

Coefficient 

𝛼 
0.05 0.1 
𝐶𝛼 𝛼′ 𝐶𝛼 𝛼′ 

Pearson (r)  0.43 0.046 0.34 0.0937 

Spearman (𝑟𝑠) 0.42 0.049 0.33 0.0987 

 
Statistical test is based on calculating the test statistic 
of interest, comparing the calculated test statistic with 
a critical value and accepting or rejecting the null 
hypothesis based on the outcome of the comparison. 
The critical values are usually determined by cutting 
off the most extreme 100 𝛼 % of the theoretical 
frequency distribution of the test statistic, where 𝛼 is 
the level of significance, see [19]. The p-values 
presented in Table 2 are approximately the same for 
the bootstrap approach, both for the Pearson and for 
the Spearman, and theoretical approaches; indicating 
that the probability of a type I error is not more than 
𝛼. It is therefore advisable that the bootstrap test 
should be employed whenever possible. The critical 
values displayed in Tables 3 and 4 clearly reveal that 
correlation analysis can easily be handled by the 
bootstrap approach. Without difficulty, a 
nonparametric confidence interval can be constructed 
for the bootstrap distribution generated. This can be 
obtained exactly the same way permutation 
confidence intervals are obtained, see [7]. 
 
4 CONCLUSION 
As promising as the p-value obtained from the 
bootstrap method, yet it is computationally 
demanding. The intensive looping in computer 
programming required to generate a very large 
bootstrap configuration demands a good programming 
skill. In general, a straight forward but computer 
intensive method of computing the bootstrap p-value 
is given and the resultant value ensured that the 
probability of making a Type 1 error is approximately 
α. 
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Appendix I: Bootstrap Algorithm for Spearman 
Rank and Pearson Correlation 
Step 1  Set value to X, N  
Step 2   For I ← 1 to N do Step 3  
Step 3  Set value to X(I)  
Step 4   Set value to Y, N 
Step 5  For J ← 1 to N do Step 6 
Step 6  Set value to Y(I) 
Step 7  [Set number of iteration T] 
Step 8  For K ← 1 to T+1 do through Step 9 to 
Step 45 
Step 9  Set x ←  Round(Rnd(A(N+N)*N+N) 
Step 10 For I ← 1 to N do through Step 11  
Step 11 Set rank A(I)  ← I 
Step 12 For temp A ← X(J) do through Step 13 

to Step 14 
Step 13 Set X(J)  ← X(J+1) 
Step 14 Set X(J+1) ← temp A 
Step 15 For trank A ← rank A(J) do through 

Step 16 to Step 17 
Step 16 Set rank A(J)  ← rank A(J+1) 
Step 17 Set rank A(J+1)  ← trank A 
Step 18 For I ← 1 to N do Step 19 
Step 19 Set rankB(I) ← I 
Step 20 For temp B ← y(J) do through Step 21 

to Step 22 
Step 21 Set y(J)  ← y(J+1) 
Step 22 Set y(J+1) ← temp B 
Step 23 For trank B ← rank B(J) do through 

Step 24 to Step 25 
Step 24 Set rank B(J)  ← rank B(J+1) 
Step 25 Set rank B(J+1)  ← trank B 
Step 26 For I ← 1 to N do through Step 27 to 
Step 28 
Step 27 Set diff (I) ← rank A (I) - rank B (I) 
Step 28  Set diff Sqr (I) ← diff (I) * diff (I) 
Step 29 For SumdiffSqr (I) ← 0 do step 30 
Step 30 Set SumdiffSqr ← SumdiffSqr  + 

diffSqr(I) 
Step 31 For I ← 1 to N do Step 32 
Step 32 Set rankcorrel ← 1 – 

((6*SumdiffSqr)/(N*(N*N-1))) 
Step 33 For I ← 1 to N do through Step 34 to 
Step 37 
Step 34 Set Suma ← suma + x(I) 
Step 35 Set Sumb ← sumb + y(I) 
Step 36 Set avea ← suma /N 
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Step 37 Set aveb ← sumb/N + x(I) 
Step 38 For xy (I) ← x(I) * y(I) do through step 

39 to step 40 
Step 39 Set X2 (I) ← x(I) * x(I) 
Step 40 Set Y2 (I) ← y(I) * y(I) 
Step 41 For Sumab ← sumab + xy(I) do 

through step 42 to step 43 
Step 42 Set Suma2 ← suma2 + X2(I)  
Step 43 Set Sumb2 ← sumb2 + Y2(I)  
Step 44 For I ← 1 to N do through Step 45 to 
Step 46 
Step 45 Set pcorrel ← (sumab – 

N*avea*aveb)/Sqr((suma2 – 
N*avea*avea)* (sumb2 – 
N*aveb*aveb)) 

Step 46 [Write out values: k, x(k), y(k), 
rankcorrel(k), pcorrel(k)] 

 
 
 
 
 
 
 
 
Appendix 2:  
The following data representing the Statistics grades, 
X, and Computer Science grade, Y, of 15 students in a 
course in Statistics 
X:      68, 54, 80, 62, 43, 32, 63, 71, 83, 59, 93, 85, 76, 

32, 58  
Y:      73, 62, 73, 51, 54, 20, 70, 69, 83, 35, 85, 54, 64, 

47, 74  
Source: Department of Mathematics, Ambrose Alli 
University, Ekpoma, Edo State, Nigeria.  
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